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A Characterization of a Polya=BEgserberser and Other

Discrete Distributions by Record Values

Ramesh ii, Korwar

University of lassachusetts
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A CTARACTERIZATION OF A
POLYA-EGGEN3ZRGEIR AND OTHER DISCRETE .
DISTRIBUTIONS 3Y RECORD VALUES T
by

R M KORWAR
Indian Statistical Institute
and
University of Massachusetts

SUMMARY, Let Xl, X2, .0sy b€ a sequence of independent
and identically distributed discrete random variables, Define
the sequence {N(n}} by N(1)=1, N(n)=min%j LL?N(n-l),XJ>XN(n-l)},
n=2,",..., Let R,= N(n)* Then~iRn} is the sequence of record
values. By convention R1=Xl‘ Here a characterization of a
Polya~Eggenberger and other discrete distributions including

the geometric)is made by the linearity of regression of Rz-Rlon RI

Consider a sequence X, Xl, X5y... of independent and iden—
tically distributed (i.i.d) discrete random variables (r.,v) with
P(X=}) =R ,j=0,...,m (1)
Here m is either a positive integer or ®e. Define
N(1)=1, N(n)=min {J‘ | >N(n-1), X;>Xy(p_q)f, B=20T0eees
Ry=X, and Rn=XN(n)) n=2,7,, .. Then {Rn} is the sequence of
record values and g?(nZ} the sequence of times at which record

values occur,

In tuis note we charaoterize the zemetric, a Polya-
Tgzenberser and a generalized hyperg2ometric distribution

by linearity of rezression of R2—R1 on Rl. Thus the
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characterization given here extends Theorem 2 of Srivastava
(1979) characterizing the zeometric »y the constancy of

regression of R2-Rl on Rl.

Consicer for X one of the following cistridutions.

pj=(l—PC;) c 'gl~c§j-l’ j=1,2,.. . ’ (2)
0 <¢ ¢c<Kl.
Py = (1‘93){?-1)( g-j+1)/(a;b) , 3=Lsee, BHl, (3)

a<o0; rLYo; n integral; n-d-1>o0; b o, td-l,
a 4(» TN
p; = (1—p,)(j-1}(n-j+1)/ n ) ' ;1 =1,2,...,
a0; n{o; n-2~1¢ 0; a+2+l> o, (=2)
Distribution (2) is a geouetric distridution, (~) and (Za) are
versions of generslized hypergeometric distribution; Type 2A
and Twpe IV, as descrived »y Kemp and Kemp (1956), For a=-1,

(7) can be recast as

A+8),.., (A+]<28) 3(B+8),..,(B+n=(j=1)-1s)

(A+3) (A+3+g) ,,,(A+B+>-1 s)
j=1,..., n+l (3%)

;o Al
Py = (1-p5) | J-l) -~

with A=1 , B=-b, s=1. An exaaple of a Polya-.g.enbverzer
distribution is (3h).

e are now reedy to prove the

Theorem: fuphrose X takes on only the values 0,...,0
with positive probonhilities ~md acsumc that X has a finlte

expectetion, Th4en

] y
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E(Ry-Ry l Ry=1) = a+ip a.s.
a,Bf Constants (4)
i=0,...,m=1
if, and only if, X has either the geometric (2), or a Polya-
Eggenberger (3b) with A=l and s=1, or a generalized hypergzo-
metric distribution (3a) with a=-l. Furtiermore, B=o iff X is
geometric (2), <o, B#l iff X is (3b) t-ritHAiel y&:l Pnd § Yo
iff X is (%a) with a=-1,

Proof: First consider the ''only if'' part. Supposc (4)

holds. Now it is shown ir Srivastava (1979) that

' m-i m
E - =) = S 'p. . . i=0,...,m-1
(Ry-Ry | Ry=i) £ P14; / éii+1 Py » i=0,...,m
Thus it follows that
5 (a+1p) > (5)
S pg s =(a+i) > P 5
Ge1 M J=i+l 9
and
s (a+77T 8) 3 (6)
- 3Py 54y =la+-l 8) 2 p. 6
=1 J j=i42 Y
Subtracting (6) from (5) we have
n
(1+8) 2 P =(a+ i+1 ) Py, (7

j=1i+1
Replacing 1 by (4i+1) in (7) and substracting the result
from (7), we finally ob»tain

Py / Pyl =(a+fi-1) / { a+ﬁ(i+2)§ , 1=0, 1,....,m=2,
This last result and (7) yiecld

A_ﬂ__--.--;----------llIIIlllllll-.-
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(e=1) . . « (a+3=28_1)

! i (a+2B). « o (q+3iB)
j=1,...,0. (8)
_ and
| py=(1+8) (1-pg) / (a+8). (9)
From (4) it follows thet
a2l (10)

We consider three cases (i) B=0, (ii) B<O and (1ii) PO.
The case =0 is already considered by Srivastava (1979)-His
result is included in (8) and specializing for B=0, (8) and
(9) give (2) with e=1/a.

Next concider the cases p#0, Now, from (4), 1t follows
that
B 0 if, and only if, X is bounded (11)
If 3<0 then a+p(m=1)=1 (12)

e obtain (12) from (4) by ®pecilizing i=m-1, From (8) and (9)
v it is clear that B=-1 leacs to the degeneracy of X at 0, &
contradition of the assumption of m being a positive integer.

! For the cases B0 (8) can bYe recast as

t3-1) [3-11 , [3-1] ry
(4]
. where x 1is the ascening factorial, %
(3] (o] ?
X =X (X+l)...(x+j-l), j=l' 2.0.-' X =l;

p, is given by (9) and
A=(a-1)/B B=1l , and C=a/B+2. (14)

-
P ]
et
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The product in the curled b“rackets in (13) is the coefficient
of 971 in the hypergeometric function

) [ . Y
031 031 (4] :
F(A;B;G;3) =§EO T8 /¢ j’%’ 8l
Thus (13) is the generalizes hvperceometric Aistridution (7)
( or 3(a) ) with

a=-1, b=1+1/g, n=-(a-1)/8 (15)

First suppose §<0. Then, from (12) and (15) we have that
n=m-1, and if my2, from (9), that B{o. Obviously, n-b-170 for J
mJ%2, Thus, for the case {0, B#1l and my2 we have a generalizad

hypergeometric distribution (3) with-parameters

a=-1l, b=1+1/p and n=m-l. This distribution is also a Polya-
Eggenberge distribution (3b) with parameter A=1l, B=-1/p, n=m-1

and s=1, However, (4) will not lead to any particular distri.

bution if m=1.

Finally assume 8 O. From (15), we have that X has the
generalized hypergemetric distrioution (3a2) with the parameters

given by (15).

Now for the ''if'' part. Let X have (3) or (3a) with

a=-~1l, Then we have

pj‘\"l/p,] =(j-1"n) / (b"n""j)) j=192"°°! u-1l.

from which we get

m m
>3 ip. / =2  ps =(b-n-1+bk) /(b-1), k=0,...,m-1
jeks#1 9 14

n=kt+
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which in turn yields (4) with e=(b-n-1)/(b-1) and
B=b/(b-1). Hence the ''if'' part is proved.
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